Synchrotron-Tomographie an metallischen Schäumen

A. Rack, A. Haibel, B. Matijasevic, J. Banhart
Hahn-Meitner-Institut Berlin, Abteilung Strukturforschung
H. Riesemeier, G. Weidemann, J. Goebbels
Bundesanstalt für Materialforschung und -prüfung
Material
Metallschäume (Zn, Al) in verschiedenen Schäumstadien

Untersuchung
Synchrotron-Tomographie und 3D-Bildanalyse

- Einfluß von Schäumzeit, Schäumtemperatur
- Korrelation von Poren und Treibmittel
- Schäumverhalten bei Variation der Legierungen
Probenpräparation

Mischen

\[\text{Zn} + \text{TiH}_2 \]

Pressen

Halbzeug

Erhitzen

Metallschaum

Ex- & In-Situ

Tomographie
Schaumproben

- 180°- oder 360°-Scans (horizontale Drehung)
- Rekonstruktion der Tomogramme - inverse Radontransformation
- Auflösung 5 μm (max. Probendimension 4x4 mm)
- Energien 6-60 keV (monochromatisch)
Aufbau - Tomographie

- CCD-Kamera
- Umlenkspiegel, Aufweitungsoptik
- Leuchtschirm (Phosphor)
- Probenhalter (x-, y-, z-Translation, 360°-Rotation)
- Röntgenstrahl (Hochvakuum)
- Beryllium-Fenster
Aufbau – Lampenheizung

- Heizlampe
- Zn-Schaum
- Probenhalter (Schamotte) mit Thermoelement
Ergebnisse – Zn-Schaum (flüssig)

Treibmittel: \(TiH_2 \) (Partikelgröße > 28 μm, 0.32 Gew.%)
Ergebnisse – Zn-Schaum

TiH_2 (> 28 µm, 0.32 Gew.%) TiH_2 (< 28 µm, 0.32 Gew.%)

Poster M41.15 - A. Haibel et al., Do 14.30 Uhr
Zusammenfassung

- Synchrotron-Tomographie am BESSY
- Untersuchung von Zn-Schaum
 - maximal expandiert und erstarrt
 - flüssig
 - unterschiedliche Materialparameter (Treibmittelgröße)

Ausblick:

- 3D Bildanalyse zur Bestimmung von Partikel- und Porengrößen, Korrelation von Poren und Schäummittel
- weitere Variation der Materialparameter