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Jürgen Meinhardtd Katja Schladitza Behrang Shafeia,c

Gabriele Steidlc

aFraunhofer ITWM, Kaiserslautern, Germany

bEuropean Synchrotron Radiation Facility, Grenoble, France

cUniversity of Kaiserslautern, Kaiserslautern, Germany

dFraunhofer ISC, Würzburg, Germany

September 30, 2013

Keywords: Micro-structure; Microtomography; X-ray Phase

Contrast; Synchrotron Radiation

Abstract

Our work copes with the analysis of 3D data of carbon fiber reinforced

silicon carbide ceramics (C/SiC). In the production process of C/SiC, a

porous carbon preform reinforced with bundles of carbon fibers is infil-

trated with liquid silicon at approximately 1500◦ C. The reaction between
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liquid silicon and carbon creates a layer of silicon carbide (SiC) while the

silicon vanishes almost completely. This material is able to withstand

extremely high temperatures and it is extremely tough with respect to

fracture. To increase the efficiency of the costly and time consuming pro-

duction process, the development of methods for monitoring the quality

of the material is helpful. For instance, the thickness of the SiC layer is

a valuable measure. Moreover, due to different coefficients of thermal ex-

pansion of the components typically cracks appear during the production

process. For effective analysis the availability of 3D high resolution image

data is necessary that can be acquired by synchrotron-CT. In a first image

processing step, we segment the 3D image data (C/SiC) with a convex

optimization approach incorporating spatial regularity. Further, we work

on the detection of cracks using an eigenvalue analysis of the 3D Hessian

matrix determined in each pixel.
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1 Introduction

Scanning electron microscopy (SEM) as well as hard X-ray microtomography

are well established techniques in materials research with complementary char-

acteristics. Using electrons as probe for imaging allows one to reach highest

spatial resolutions for imaging in combination with analytical techniques but

commonly restricted to two-dimensional images. X-ray microtomography gives

access to volume images in a widely non-destructive manner but commonly is

not an analytical technique with comparably limited sensitivity. In this paper

we shall outline how hard X-ray phase contrast can partially be used to bridge

the gap between the two techniques: while the common absorption contrast in

X-ray imaging allows one to visualize density changes, X-ray phase contrast is a

modality which exploits electron density variations in the sample. Hence, a con-

trast which is similar to the SEM contrast is accessible in a three-dimensional

manner [1]. Consequently, combining both techniques offers a powerful approach

to study weakly contrasted multi-constituent samples in a quantitative manner

which opens quantitative volume image analysis to a new range of specimens.

As an example application fiber reinforced ceramic composites were chosen

due to their wide-spread use: carbon fiber reinforced silicon carbide ceramics

(C/SiC) are applied for example as brake or clutch disks. Here, short fiber bun-

dles are used instead of individual fibers. These bundles consisting of several

hundreds of fibers increase the fracture toughness of the ceramic. A special case

are short fiber bundles distributed isotropically within a plane. In the produc-

tion process of these ceramics, a porous carbon preform reinforced with bundles

of carbon fibers (C/C) is infiltrated with liquid silicon at approximately 1 500◦C.

The reaction between liquid silicon and carbon creates a layer of silicon carbide

(SiC) while the silicon vanishes almost completely. The materials properties

of the resulting C/SiC ceramic are determined by the complex 3D network of
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carbon fiber bundles, silicon, and SiC ceramic. In particular, this material is

able to withstand extremely high temperatures and it is extremely tough with

respect to fracture. For classical X-ray imaging, these kind of samples repre-

sent a challenge as carbon fibres show poor contrast due to their homogeneous

density while furthermore the density changes between Si and SiC are poor as

well.

Usual quantitative analysis based on 2D images as arising from scanning

electron microscopy can capture the volume fractions of the components and to

some extent the thickness of the SiC layer. However, valuable 3D information is

missing. We used the SEM images here as an analytical probe, i. e. to identify

the material phases in the phase- contrast volume tomographic data due to

their morphology in comparison with the SEM images [2]. Consequently, micro

computed tomography (µCT) was used to acquire high resolution 3D image

data enabling the spatial analysis of the SiC layer of about 20µm thickness,

see Figure 1. Using synchrotron radiation (SRµCT) and the associated inline

X-ray phase contrast results in an image quality also allowing to analyze the

remaining porosity as well as the network of micro-cracks arising from different

coefficients of thermal expansion of the components and being typical for C/SiC

ceramics.

Figure 1: One slice from a 3D image of a C/SiC sample acquired at the BAMline
at BESSY [3].
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Quantitative geometric analysis [6] requires segmentation of the components

of the C/SiC-microstructure. Thus we first segment the carbon, silicon carbide,

and pore space components applying a recently developed method [4] that ex-

ploits the fact that Si and C react to form the SiC layer. The new segmentation

method is based on convex optimization incorporating spatial regularity. Subse-

quently, the volume fractions of carbon matrix, carbon fibers, and silicon carbide

can be measured.

Local shape analysis [5] bears the potential to detect micro-cracks and to

analyze the intrinsic fiber structure of the C component. Thus, second, we

use this approach on the original unsegmented gray value image to find micro-

cracks. It is based on an eigenvalue analysis of the Hessian matrix in each pixel.

Morphological post-processing yields the micro-cracks.

Combining the geometric information gained from these two independent

methods, renders detailed statements about the spatial arrangement possible.

As an example, we show that the micro-cracks cross all three solid components.

The tomographic technique used is shortly described in the following Section

2, followed by a summary of the segmentation method in Section 3. Then, the

method for detecting cracks based on a local shape analysis is introduced in

Section 4. The analysis methods are shortly introduced in Section 5. Finally,

Section 6 shows exemplary results and identifies tasks for further research.

2 Synchrotron-based Microtomography

The tomographic volume image analyzed within this article was acquired at the

microtomography facility of the BAMline (BESSY II synchrotron light source,

Helmholtz-Zentrum Berlin, Germany) [3].

For the data acquisition an X-ray photon energy of 17 keV was selected via

the beamline’s double-multilayer monochromator. High-resolution X-ray images
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were acquired using an indirect detector consisting of a 40-µm thick CdWO4

single-crystal scintillator glued on top of an undoped Y3Al5O12 substrate: the

resulting luminescence image is projected by an inhouse-designed optical system

(macroscope, 9× nominal magnification, 0.5 numerical aperture of the front ob-

jective) on the CCD chip of a Princeton Instruments camera (type: VersArray:

2048B) [3]. Parasitic luminescence from the substrate is blocked by a glass filter

placed downstream the objective. The resulting effective pixel size is 1.5 µm,

a spatial resolution of <4 µm was measured via a line-spread function. The

resulting detector field-of-view is approximately 3 mm × 3 mm.

1 500 projection images were acquired over a tomographic scan range of 180

degree. Tomographic reconstruction was performed using the filtered backpro-

jection algorithm via the software package PyHST of the European Synchrotron

Radiation Facility. A propagation distance of 27 mm between the sample and

the detector (scintillator) was chosen in order to increase the contrast by means

of X-ray inline phase contrast [7]. Exploiting the full refractive index of the spec-

imen for contrast increases drastically the sensitivity, i. e. while the attenuation

signal is related to the physical density of the material, X-ray phase contrast is

proportional to the election density. Hence, X-ray phase contrast images can

reveal an image sensitivity similar to electron microscopy [8].

A typical sample slice of the data set acquired is displayed in Figure 1. The

three main phases Si, C and SiC can be visually identified. This interpretation of

the grayscaled SµCT image has been verified: a scanning electron microscopy

image of a similar sample was compared with a tomographic slice employing

inline X-ray phase contrast [2]: the different material phases were identified

using electron backscatter techniques. Due to the similar morphology as well as

arrangement of the different constituents in both images one can consider the

interpretation of the SµCT volume data set as correct.
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3 Segmentation

Image segmentation always suffers from uncertainty in defining the structures

which are to be characterized. Therefore, it is desirable to incorporate prior

or expert knowledge into the design of specialized segmentation routines. This

section briefly reviews the segmentation model adapted to volumetric 3D images

of C/SiC introduced by [4]. This model allows to exploit the fact, that Si and

carbon are always separated by the SiC layer.

We work with grayscale images F : {1, . . . , n1}×{1, . . . , n2}×{1, . . . , n3} →

R defined on a discrete grid and often reshaped to f : {1, . . . , N} → R where

N = n1n2n3 denotes the number of pixels.

To obtain the vector of characteristic functions of the segments

u = (uk)ck=1, uk = (uk(j))Nj=1 ∈ RN

one can solve

argmin
u∈RcN

c∑
k=1

N∑
j=1

uk(j)sk(j) + λ

c∑
k=1

TV(uk) (1)

s.t. uk(j) ∈ {0, 1},
∑
k

uk(j) = 1 (2)

where c is the fixed number of classes, λ ∈ R a fixed regularization parameter,

and the constant sk(j) determines a dissimilarity between cluster k and pixel

j. For instance, sk(j) := |rk − f(j)| where rk is a prototypical gray-value of

segment k to be determined beforehand (also called center).

TV : RN → R denotes the discrete total variation where TV(uk) corre-

sponds to the length of the boundary of segment k as long as u is binary. The

total variation has been introduced by [9] for image processing applications. In

particular, there exist many applications to labeling and segmentation, see the
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references in [4]. Moreover, the total variation has been applied to the segmen-

tation of 3D CT-images of multifilament superconductors [10]. In the following,

we introduce a discrete variant of the total variation using forward differences.

Using the forward difference matrix

Dn :=



−1 1

−1 1
. . . . . .

−1 1

0 . . . 0


∈ Rn×n (3)

with mirrored (Neumann) boundary conditions, we obtain the discrete gradient


fx

fy

fz

 =


In3 ⊗ In2 ⊗Dn1

In3 ⊗Dn2 ⊗ In1

Dn3 ⊗ In2 ⊗ In1


︸ ︷︷ ︸

D

f. (4)

Thereby, ⊗ denotes the Kronecker-product, i.e.,

A⊗B :=


a11B . . . a1n2B

...
. . .

...

an11B . . . an1n2B

 ∈ Rm1n1×m2n2

withA ∈ Rn1×n2 andB ∈ Rm1×m2 . Using the notation ‖x‖2,1 :=
∑N
j=1

√
x2
j + x2

N+j + x2
2N+j

for x ∈ R3N , the discrete total variation for images f : {1, . . . , N} → R is defined

by

TV(f) := ‖Df‖2,1 =
N∑
j=1

‖(Df)(j)‖2 =
N∑
j=1

√
fx(j)2 + fy(j)2 + fz(j)2. (5)
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The total variation enforces neighboring pixels to be in the same pixel while

respecting edges in the image in contrast to the quadratic regularization term

‖Df‖22,1.

3.1 Optimization Algorithms

The optimization over the characteristic vectors of the segments u ∈ {0, 1}cN

in (1) is NP-hard. Hence, we relax the binary constraint to uk(j) ∈ [0, 1] and

obtain the continuous and convex optimization problem

argmin
u∈RcN

c∑
k=1

N∑
j=1

uk(j)sk(j) + λ

c∑
k=1

TV(uk) (6)

s.t. uk(j) ∈ [0, 1],
∑
k

uk(j) = 1 (7)

as an approximation of (1).

To minimize (6), we use the alternating direction method of multipliers that

is equivalent to the Douglas-Rachford splitting applied to the dual problem, see,

e.g., [11, 12]. In fact, we have to solve a sequence of simpler subproblems that

update the primal and the dual variables of our optimization problem. This is

explained in detail in [4, 10].

3.2 Respecting Separating Layers in the Segmentation Model

Since the C/SiC ceramics have the property that the carbon pre-form and the

carbon fiber layers are separated by silicon carbide, we adapt our segmentation

model to respect this property in terms of the dissimilarity constant s.

We want to forbid pixels of non-touching segments to be neighbors. There-
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fore, we introduce for every pixel the binary distance function

bk : {1, . . . , c} → {0, 1}, bk(k′) :=


1 if segment k′ must not touch segment k

0 otherwise.

(8)

The definition of b determines which segments are allowed to have common

boundary. Moreover, we need an initial segmentation l0 : {1, . . . , N} → {1, . . . , c}

to define

Pk(j) :=
∑

i∈N (j)

bk(l0(i)), j = 1, . . . , N, k = 1, . . . , c (9)

where Nj denotes the eight-neighborhood of pixel j. With this penalizing func-

tion at hand and a new regularization parameter µ ≥ 0, we set

sk(j) := |f(j)− rk|+ µPk(j). (10)

This yields a two-step approach:

1. Compute an initial segmentation l0 by solving (6) with sk(j) := |rk−f(j)|.

2. Change s to sk(j) := |f(j)− rk|+ µPk(j) and compute the final segmen-

tation by solving (6) again with the amended constant s.

4 Crack detection

To find micro cracks we follow [5] using the method for detecting closed cell

windows in open cell foams from [13, 14] and extending a filter originally in-

troduced to enhance blood vessels in µCT images [15]. It can be formalized as

follows:
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Denote by g : R3 7→ R the continuous extension of image F and by G(x, s)

the isotropic Gaussian kernel with standard deviation s. Then following [16, 17]

the γ-normalized derivative of g at scale s is given by

∂

∂x
gs(x) = sγg(x) ∗ ∂

∂x
G(x, s) , (11)

where γ ∈ [0, 1] is a normalization factor that ensures the invariance of the

derivative across different scales. As crack detection is related to ridge detection

(the maximal filter response is expected at the centre of the structure) we use

γ = 0.75 as suggested in [17].

The idea is now to use the Gaussian kernel as a probe to account for the

second order structure of g. More precisely, we study the contrast variation

in the region (−s, s) around a point x by evaluating the second order partial

derivatives given by the Hessian matrix H(x, s). Geometrically H maps the

spherical neighbourhood centered at x to an ellipsoid that fits the strength of

local contrast variation. Its semi-axes correspond to the eigenvectors of H.

Hence, the local geometric structure of the image can be determined by the

ratio of their lengths, that is, the eigenvalues of H.

Denote by λi (i = 1, 2, 3) the eigenvalues of H ordered such that |λ1| <

|λ2| < |λ3|. Then detecting lamellar micro cracks corresponds to searching for

prolate ellipsoids with λ1 and λ2 small while λ3 is significantly larger. This

means searching for points x for which the ratio of the second and the largest

eigenvalue vanishes, i.e.

RA(x, s) = |λ2|/|λ3| → 0 . (12)

To stabilize the filter response we take into account two additional features:

As the ellipse that corresponds to a crack should differ from a sphere, i.e. a
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blob-like structure, the ratio

RB(x, s) =
Acircle(λ1)

Aellipse(λ2,λ3)
=

|λ1(x, s)|√
|λ2(x, s)λ3(x, s)|

(13)

should vanish. Here Acircle(λ1) denotes the area of the circle defined by λ1 and

Aellipse(λ2,λ3) is the area of the largest cross-sectional ellipse that is orthogonal

to the circle defined by λ1. Moreover, to prevent unpredictable filter responses

due to random noise in the background the squared sum of the eigenvalues of

the Hessian H

NF(x, s) =

(
3∑
i=1

λi(x, s)2
)1/2

(14)

should not vanish at x.

To obtain a filter that enhances cracks we combine the quantities given in

(12)–(14) into a product of scaled exponentials of RA, RB and 1 − NF . The

resulting measure W (x, s) attains its maximum for cracks with size propor-

tional to s. As the size is usually not known in advance we search the max-

imal response over several scales smin, smax ∈ R+ yielding the filter W (x) =

maxsmin≤s≤smax W (x, s).

This filtering w. r. t. locally lamellar structures yields the micro cracks

but many other parts of the structure, too. In particular the filter enhances

the interface between the components C and SiC. Excessive post-processing

applying morphological transforms, orientation analysis, and object filtering

w. r. t. volume and shape allows nevertheless to separate the cracks from these

erroneously detected regions thus enabling further characterization of the cracks.

5 Quantitative analysis

The intrinsic volumes – the volume V , the surface area S, the integral of mean

curvature M and the Euler number χ form a basic set of geometric character-
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istics that can be measured efficiently from 3D image data [6, Chapter 5]. For

a convex object, M is up to a constant the mean width. The Euler number is

a topological characteristic alternately counting the connected components, the

tunnels, and the holes of the particle. For a convex body, we have χ = 1, for a

torus χ = 1− 1 = 0, and for a sphere χ = 1 + 1 = 2.

For components of macroscopically homogeneous micro-structures that do

not feature a natural object structure, the densities of the intrinsic volumes are

more suitable. Instead of the absolute values of these four functionals, now their

ratio to the sample volume is considered: the volume fraction VV , the specific

surface area SV , and the densities of the integral of mean curvature MV and

the Euler number χV . A shape factor can be derived from these, too. The

so-called structure model index originally introduced to evaluate bone structure

[18] takes values 4, 3, and 0 for ideal systems of non-overlapping balls, cylinders,

and planes, respectively. It can be derived from the densities of the intrinsic

volumes 4πVVMV /S
2
V and therefore as these quantities be estimated from image

data without a surface meshing [19].

6 Results & Conclusions

C/SiC materials behave anisotropically due to the anisotropic orientation of the

short fiber bundles. Roughly speaking, besides carbon (matrix and fibers), sil-

icon, and silicon carbide, the micro-cracks form a fourth phase that is typical

for this material. They arise from the different thermal expansions of carbon

fibers and silicon/silicon carbide matrix and extend from fiber bundle to fiber

bundle, orthogonal to the fiber bundle orientation. Thus the micro-cracks are

anisotropically oriented, too. Segmentation of both the micro-cracks as well as

the SiC component opens the opportunity to correlate geometric characteristics

of these components with macroscopic materials properties. In particular, oxi-
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dation of the carbon fiber bundles mainly spreads through the fiber bundles but

the micro-cracks act as diffusion paths for oxide, too.

The segmentations achieved so far reveal the micro-cracks and show that

they cross all solid micro-structure components. However, the segmentation

of the micro-cracks relies on heavy morphological post-processing preventing

subsequent quantitative analysis of the crack structure. Analysis e. g. of orien-

tation, local thickness, or connectivity of the crack structure requires a segmen-

tation that better preserves the original structure. This in turn needs higher

resolution as well as stronger gray value contrast. Nevertheless, based on the

(a) Slice through original (b) Slice through segmenta-
tion result

(c) Volume rendering with crack

(d) Volume rendering with crack

Figure 2: Segmentation result, 2D slices: blue - Si, green - C, yellow - SiC,
volume renderings: lightblue - SiC, green - C, yellow - microcrack.

14



phase VV SV

C 47.83 % 57.7 mm−1

Si 25.55 % 20.5 mm−1

SiC 26.65 % 74.0 mm−1

Table 1: Volume density (VV ) and specific surface (SV ) for each of the three
microstructural components of the C/SiC.

segmentation derived in 3.1, quantitative analysis of C, SiC, and pore space is

possible. Table 1 shows as exemplary results the volume fractions and specific

surface areas of the three segmented components. Another practically signifi-

cant question is to which extent the silicon carbide actually enwraps the carbon

fiber bundles. The SiC acts as an oxidation barrier. Thus, no additional oxida-

tion protection is needed if the SiC layer is really intact as the only remaining

paths for oxidation would be the micro-cracks that close due to thermal ex-

pansion when heated to a couple of 100◦C. Obviously, this question can not be

answered based on the segmentation from Sec. 3.1, as this relies on the fact that

C and pore space pixel are always separated by an SiC layer. More generally,

the problem can not be solved based on the given image data, see Figure 3. A

Figure 3: Strongly enlarged subwindow of the SRµCT data set from Figure 1.
Given the present lateral resolution, it is impossible to decide whether the SiC
layer is completely closed in the center of the indicated region.

satisfactory solution of this question calls for both higher lateral resolution in

the 3D data as well as an alteration of the segmentation method, a subject of
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ongoing research.
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