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ABSTRACT

Fiber-reinforced materials such as glass and carbon fiber-reinforced polymers or ultra high performance
concretes find an increasing number of applications e.g. in construction of bridges, automotive and aerospace
engineering. Due to their matrix, such materials typically posses high compressive strengths while the fibers
contribute tensile strength to the overall material properties. Measuring these fibers’ orientation distribution in
images obtained e.g. by micro-computed tomography (µCT) or scanning acoustic microscopy (SAM) enables
an assessment of mechanical properties of a specimen. Unfortunately, image quality is often low, which
complicates the segmentation of fibers in such images. We have recently proposed a method for computing
fiber orientations directly from gray valued images. This method applies anisotropic Gaussian convolution
filters to find the likely local orientation in each pixel. An efficient implementation of this filter operation
in 2D and 3D is available. By accumulating the local orientations of foreground pixels in the second order
orientation tensor, mean fiber orientations and information on the shape of the fiber orientation distribution can
be computed. We here propose a novel sampling scheme for this method, evaluate its accuracy on simulated
data and apply it to compute fiber orientations in a µCT-reconstruction of a carbon fiber-reinforced polymer.

Keywords: anisotropic image filter, fiber orientation, orientation space, fiber-reinforced polymer, CT.

INTRODUCTION

The fiber orientation distribution is an important
factor influencing the properties of various fibrous
materials. This has been shown to be true e.g. in bones
(Martin and Boardman, 1993) as well as in ultra high
performance concretes (Markovic, 2006). Examples
from materials science include the work of Fu and
Lauke (1996), who developed models for fiber lengths
and orientations to study their effects on the tensile
strength of fiber-reinforced polymers, and Hine and
Duckett (2004), who investigated the effect of local
orientations on stiffness and thermal expansion in glass
fiber-reinforced materials.

Motivated by such results from the literature, we
here focus on algorithms for computing the fiber
orientation distribution in fiber-reinforced polymers,
but the method may also be applicable to other
materials.

The many proposed methods for analyzing fiber
systems include various stereological approaches,
e.g. (Clarke et al., 1995; Lee et al., 2003; Redon
et al., 1998). Kiderlen and Pfrang (2005) demonstrated
how to compute the rose of directions, the direction
distribution of the fibers’ tangent vector in the typical
fiber point, from fiber counts in oriented planar cuts.
This requires them to segment fiber profiles in 2D-
images. Given a segmentation of individual fibers in

3D-images obtained by µCT, the fibers’ orientation,
spatial distribution or shape are accessible. Therefore,
various segmentation methods have been applied to
fibers, e.g. (Aylward and Bullit, 2002; Donoser and
Bischof, 2006; Yang and Lindquist, 2000). Either way,
image segmentation is the performance limiting step.

Other approaches to measuring fiber orientations
utilize gradient information. The first derivative is
useful for edge detection and has been used to compute
2D-fiber orientation distributions (Gadala-Maria and
Parsi, 1993). Second order derivatives, suitable to
detect ridge-like structures such as fibers (Eberly et al.,
1994), can be applied either to an image’s auto-
correlation function (Napadow et al., 2001), or directly
to a grayscale image, e.g. (Daniels et al., 2006; Frangi
et al., 1998; Sato et al., 1997). The advantage of these
gradient-based over segmentation-based methods is
that they can detect subtle changes in an image’s gray
values, even when some segmentation algorithms may
fail on that data.

Following this general idea, the present paper
uses anisotropic Gaussian convolution filters in 2D
and 3D to compute fiber orientation distributions.
Similar approaches such as (Chen et al., 2000) or
(Faas and van Vliet, 2003) apply such concepts for
segmentation. In contrast, we show how the filter
results directly lead to an algorithm for analyzing
fiber orientation distributions, without segmenting
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individual fibers. Our easily implementable approach
to fiber orientation measurement will be shown to
deliver accurate results. Results from the proposed
method are different forms of orientation measures
such as discrete distributions on the sphere, orientation
tensors or mean fiber directions. We here extend our
previous work (Robb et al., 2007) by a novel sampling
method, numerical evaluations and a new application
example demonstrating the applicability of our method
to carbon fiber-reinforced polymers.

METHOD

Anisotropic convolution filters are useful for
adaptive image smoothing by aligning them to local
image structures, see e.g. (Lee et al., 2006). They
can, on the other hand, also be used to detect image
structures, which is done in this paper. Different
types of filters could be used for this purpose,
and we will use d-dimensional anisotropic Gaussian
filters, for they possess an intuitive parameterization,
see below, and are implementable with linear
runtime complexity (Lampert and Wirjadi, 2006). The
Gaussian convolution kernel is given by

g(x) =
1

(2π)d/2|Σ|1/2 exp
(
−1

2
xt

Σ
−1x

)
. (1)

Here, Σ denotes the d × d symmetric positive definite
covariance matrix, and |Σ| its determinant. The d(d+1)

2
degrees of freedom of Σ encode the filter’s shape. Its
Eigen decomposition,

Σ = (v1, . . . ,vd)

 s1
. . .

sd

(v1, . . . ,vd)t , (2)

into Eigen vectors vi ∈Rd and d Eigen values si ∈R is
useful for interpreting this encoding. The vi describe
the orthogonal filter axes and the si the size of the
filter kernel in those directions. For detecting fibers in
2D, we may choose s2 > s1, resulting in an elliptic
filter shape that fits well to fibers with diameter 2s1.
In 3D, the filter has three orthogonal axis directions
(v1, v2 and v3), and three filter size parameters (s1, s2
and s3) in the corresponding directions. By choosing
parameters s3 > s2 = s1, a filter with the shape of
a prolate spheroid results, which fits well to fibers
with circular profiles. With these parameterizations,
the response of the filter g at a pixel x is expected to be
maximized when the filter’s direction vd is aligned to a
fiber in that point, both in 2D (d = 2) and 3D (d = 3).

Let gv denote an anisotropic Gaussian convolution
kernel with vd = v and let f be a d-dimensional image.
Following the reasoning above, define the reduced
orientation space O(x) as

O(x) = (r(x),v(x)), (3)

where r(x) = maxv[gv ∗ f ](x), v(x) = argmaxv[gv ∗
f ](x), and ∗ denotes convolution. We refer to O(x) as
a reduced orientation space as it contains the direction
of maximal filter response r(x), only. v(x) represents
the most likely local orientation in a point x under
the model g. To compute O(x), we search over a
set of sampling directions, see below. The filter size
parameters, on the other hand, are chosen relative to
the fiber radius r, which is assumed to be known and
constant throughout the image: Set sd = 2r and s1 = r
or s1 = s2 = r in 2D or 3D, respectively.

SAMPLING DIRECTIONS

Fig. 1. Three sets of sampling points used for
computing the reduced orientation space O(x) in 3D.

The procedure described above filters the image
f in n directions {vi}i=1,...,n. To avoid a bias in the
results, it is important to choose these n directions
uniformly placed on the half-sphere. In 2D, this
is easily achieved by dividing the half-circle in n
equiangular steps. In 3D, however, choosing n points
that partition the hemisphere uniformly is not trivial.
A number of methods for the unit ball have been
proposed, see e.g. (Saff and Kuijlaars, 1997). Here,
we follow a numerical method proposed by Fliege
and Maier (1999), who gave an optimization algorithm
for distributing n points on the unit sphere S2. We
modified their original algorithm by optimizing a
set of 2n points on S2, which contain the mirror
point −v for each vector v. This procedure results
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in a set of points placed equally (except for the
sign) on the upper and lower hemisphere. Only the
vectors on the upper hemisphere (positive sign in their
third component) will be used, thus yielding suitable
sampling directions.

This was performed for n = 18,50,98, resulting
in three orientation space resolution levels, which will
be referred to as coarse, medium and fine sampling,
respectively (Fig. 1).

ORIENTATION TENSORS
The reduced orientation space of an image

is not useful on its own. This section therefore
introduces methods for averaging and summarizing the
orientation information contained in O(x).

Histograms of the local orientations v(x) can
be graphically mapped onto the circle or sphere
to visualize the fiber orientation distribution in an
image f , see (Robb et al., 2007). For quantitiative
interpretations of O(x), we use orientation tensors
(Tucker and Advani, 1994). They are frequently used
for simplifying the computation of directional averages
when simulating mechanical properties of fibrous
materials, see e.g. (Camacho et al., 1990; Kim and
Song, 1997). Let p be a density defined on the sphere
Sd−1 with p(v) = p(−v). Orientation tensors are then
defined as the moments of the distribution p. The
second order orientation tensor ai j,

ai j =
∫

Sd−1
viv j p(v)dv, (4)

is v’s correlation matrix and therefore represents
an ellipsoidal approximation of p’s shape. Here, vi
denotes the i’th component of v, and i, j = 1, . . . ,d.

The use of ai j from an image analysis perspective
is twofold. It comprises a convenient method for
averaging directional information over images or
image areas, see below, and it can directly be
used in subsequent simulation studies using methods
such as those described in the references given
above. Therefore, a number of authors have used
ai j to describe the orientation of fibers in images.
Among those are approaches for computing ai j using
stereological methods (Eberhardt and Clarke, 2001;
Harrigan and Mann, 1984; Lee et al., 2003), and by
integrating over the responses of quadrature filters
instead of p as in Eq. (4) (Knutsson, 1989).

To compute ai j from the reduced Gaussian
orientation space O(x), we use sample averages over
all pixels belonging to the fiber system B. B is
identified by a global gray value threshold t0,

B = {x| f (x) > t0} , (5)

assuming that fibers appear with larger gray values
than the background. In practical experiments setting
t0 to 10% above Otsu’s threshold (Otsu, 1979) was
sufficient for all datasets tried. To choose a high
threshold t0 is appropriate here as it eliminates pixels
close to fiber edges, where orientation estimates are
least stable. In a window W , ai j is then estimated by

TW :=
1

|W ∩B| ∑
x∈W∩B

v(x)vt(x), (6)

which we call the sample second order orientation
tensor TW . See (Fisher et al., 1987) for how to compute
the mean fiber orientation and other shape measures of
the fiber orientation distribution p from TW ,

For averaging over W ∩B to yield correct sample
orientation tensors, a few conditions have to be met.
In stochastic geometry, random fiber processes are
described by sets of finite smooth curves. Their
orientations are characterized by the tangential vectors
of these curves, which posses distributions that are
random measures on the circle or sphere. For a
rigorous definition, see (Stoyan et al., 1995). Then,
for a system of non-overlapping fibers, the distribution
of the tangential direction vectors, p(v), is a length-
weighted distribution, since each fiber contributes
proportionally to its length to the overall probability
mass. Under the assumption made above that all fibers
have equal diameter 2r, this is also true for the sample
mean over vvt in (6), as the number of pixels that a
single fiber contributes to B is then proportional to its
length.

A potential problem in evaluating (6) is the edge
treatment. When observing stochastic processes in
finite areas W , realizations of large objects, in the
present case long fibers, have a higher probability
of intersecting the boundary than small objects. This
can lead to a bias in the estimated quantity. Different
methods to avoid this problem have been proposed,
see e.g. (Baddeley and Jensen, 2004) for an overview.
These methods, however, all rely on individually
segmented objects being available.

As the present paper describes a method for
orientation estimation that does not rely on the
segmentation of fibers, there is no immediate remedy
for the edge correction problem. Therefore, when
estimating TW using (6), one has to either choose
a sufficiently large observation window W , or the
orientation of an individual fiber must be independent
of its length.
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RESULTS

Next, we will test the proposed method with
respect to accuracy and runtime requirements. All
results in this section were performed on artificially
generated 2D and 3D data.

ACCURACY

To measure the accuracy of local orientations, we
used an overlapping Markov fiber process. Starting
with a random pixel and direction, a new direction
vector is drawn from a von Mises-Fisher distribution
(Fisher et al., 1987) with respect to the previous
direction (Fig. 2(a)). The next point is then generated
by moving one unit step in this new direction. The
von Mises-Fisher distribution has a scalar spread
parameter, κ , which is used here to control the
curvature of the generated fibers.

(a) Simulated test data.
Additive noise variance
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(b) Accuracy on test data.

Fig. 2. Median angular difference between the true and
estimated tangent fiber direction along the central fiber
path of simulated overlapping fibers. Local orientation
estimates are more accurate in 2D than in 3D.

With this setup, we generated images with
random overlapping fiber systems and known tangent
directions v∗(x) in every fiber point x ∈ B. To measure
the accuracy of the proposed method, the inner product
between true and estimated directions, arccosvtv∗,
along the fiber paths was used (Fig. 2). The proposed
method is robust to some degree of additive noise. The
influences of choosing a resolution level are clearly
visibly, but these differences diminish as the amount
of noise increases. In general, the proposed method
is more precise and more robust to noise in 2D than
in 3D. We attribute these differences to the angular
sampling, which is much finer in 2D (1◦) than in 3D
(13.8◦ on average for “fine” sampling).

RUNTIME

Implementation of the anisotropic Gaussian
convolution has linear time complexity in the number
of pixels, both in 2D and 3D (Lampert and Wirjadi,

2006). Given the choice of a resolution level,
computation of the reduced Gaussian orientation space
in Eq. (3) requires a fixed number of such filter
operations. Thus, the overall time complexity remains
linear in the number of pixels.
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Fig. 3. Experiments demonstrate the linear runtime
depending on the number of pixels of the proposed
method. All measurements shown here were performed
on a single core of an Intel Xeon 2.5GHz CPU (E5420)
running GNU/Linux.

To verify whether this statement holds in practice,
we measured the runtime of our implementation of
Eq. (3) on a single processor (Fig. 3). The runtime
indeed depends linearly on the number of pixels. With
overall processing times in the range of one minute and
one hour for common 2D and 3D image data sizes,
respectively, we judge the computational burden of the
method proposed in this paper to be tractable.

APPLICATION: CARBON FIBER-
REINFORCED POLYMER

Among modern composite materials, carbon fiber-
reinforced polymers (CRP) are gaining importance in
light-weight applications such as fuselages of modern
aircrafts. Imaging and analysis of the fiber systems
of CRPs is very challenging due to small fiber size
(diameters well below 10µm), high fiber density (fiber
volume fraction above 60% for the CRP processed
here) and the low material contrast between carbon and
polymers. Synchrotron µCT can image the full three
dimensional structure at spatial resolutions in the range
of 1µm in specimen with side lengths up to about
1.5mm. The combination of a good signal to noise
ratio and X-ray phase contrast techniques delivers
volume images which allow one to visually identify
single fibers, cf. Fig. 5. Nevertheless, the small inter-
fiber distances, partially below the spatial resolution
of the imaging system and the inhomogeneous phase
contrast (in principle an edge enhancement), make
accurate segmentation of individual fibers difficult if
not impossible.
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(a) Visualization of a part
(5123) of a µCT-reconstruction
of a CRP.

(b) Segmentation of two
differently oriented fiber layers
by their local orientations.

Fig. 4. Application of the proposed method to a
synchrotron µCT-reconstruction of a carbon fiber-
reinforced polymer (sample by R. Stößel, EADS).

The analysis method proposed in this paper, on
the other hand, is suitable for analyzing such data as
it is capable of detecting anisotropies in the image
texture. To demonstrate this, we applied our method
to a µCT-image of a CRP acquired at ESRF Grenoble
with a spatial resolution of 0.7µm. The carbon fibers
have a diameter of about 5µm, therefore we set s1 =
s2 = 4 pixels and s3 = 8 pixels and computed O(x)
by sampling v3 along the 98 directions in the “fine”
resolution set shown in Fig. 1.

TB =

 .24 .09 .05
.10 .26 .07
.05 .07 .50



TA =

 .35 .09 .04
.09 .38 .06
.05 .06 .26


Fig. 5. The orientation tensors computed in two
distinct areas of the carbon fiber-reinforced polymer
sample. The differently oriented fiber systems in the
two areas are clearly picked up by our method.

The resulting local orientations clearly
differentiate between the differently oriented fiber
layers in this specimen, which can be seen in Fig. 4,
where we used the local orientations v(x) from O(x)
to segment the total volume into two areas. Such a
segmentation result could be used in a subsequent
analysis step to provide layer-specific information such
as volume densities or mean orientations.

To demonstrate the latter, we further evaluated the
sample second order orientation tensor from Eq. (6) in
these two distinct fiber layers (Fig. 5). The resulting
tensors reveal a z-axis parallel fiber orientation area B
(shown in red), which can be seen from the dominating

third element of TB’s matrix diagonal. Fiber area A
(shown in green), on the other hand, contains fibers
with orientations largely in the xy-plane, as indicated
by two about equally large dominating entries in the
first two elements on the matrix diagonal of TA.

DISCUSSION

We described a method for computing local fiber
orientations and their distributions from 2D and 3D
images. For fiber reinforced-polymers, where fibers
typically posses constant radii, sample averages of
the resulting orientation vectors yield an estimate of
the orientation tensor. Furthermore, the method was
demonstrated to be suitable for analyzing µCT images
of a carbon fiber-reinforced polymer. Anisotropic
image filters are valuable tools for processing image
data of the microstructure of fibrous materials,
especially when image resolution or quality are
insufficient for segmentation of individual fibers.
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