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Beyond imaging: on the quantitative analysis of tomographic volume data

Tomographic techniques are a valuable analytical tool as they deliver spatial information of a specimen
in a truly three-dimensional manner. Both computed tomography with high spatial resolution and quan-
titative volume image analysis have made enormous progress during the last decade. In particular in
materials and natural science applications the combination of high-resolution three-dimensional imaging
and the subsequent image analysis exploiting the fully preserved spatial structural information yield new
and exciting insight.
In this paper, field-tested and up-to-date methods for tomographic imaging of microstructures, for pro-
cessing and for quantitatively analysing three-dimensional images are introduced. By selected applications
from materials research, this article shall underline the importance of volume image analysis as a crucial
step in order to go beyond the images: it allows for determining spatial cross-correlations between differ-
ent constituents of a specimen, to investigate orientations or to derive statistically relevant information
like size distributions. The core part of the paper consists, besides the exemplary application scenarios,
in the processing chain, the tools and methods used.
Keywords: 3D image; Micro-structure; Intrinsic volumes; Local fibre direction; Correla-
tion analysis; Microtomography
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1 Introduction

Microtomography yields attractive and impressive images of, e. g., microstructures of foams, fiber com-
posites, snow, lichen or soil. This is particularly important for weak or highly porous materials whose
microstructures could not be imaged by classical techniques like materialography involving serial slicing
and microscopic imaging. The use of microtomography enables three-dimensional (3D) visualisation and
virtual slicing of the sample and thus boosts understanding. Quantitative image analysis goes one step
further beyond plain imaging: yielding a quantitative description of the microstructure. Exploiting the
full spatial information contained in 3D images allows, e. g., for detailed directional analyses, estimation
of particle size distributions without shape assumptions, or judging the 3D connectivity of a structure,
just to name a few. Moreover, macroscopic materials properties like mechanical strength, permeability, or
acoustic absorption can be simulated in the 3D images or in geometric models fit to the microstructure.
Many image processing and analysis algorithms are algorithmically and computationally one magnitude
more complex in 3D than in 2D. Furthermore, basic image processing concepts like neighborhoods have
to be rethought when moving on to the third dimension.
The outline of this paper is arranged around an overview on tomographic techniques, followed by a
discussion of basic image processing techniques such as filtering or segmentation which play an important
role in the preparation of images for quantitative analysis. Then, use cases of quantitative image analysis
are presented, introducing appropriate methods for different kinds of materials.

2 Tomographic Imaging

Initially, the acronym tomography (from the Greek words τ óµoς [tomos] in the sense of to cut and
γ%άϕειν [graphein] for to draw) was solely associated with the so-called computed-axial scanning tomog-
raphy (CAT) scanners for which G. N. Houndsfield and A. M. Cormack were presented the Nobel Prize
for Physiology or Medicine in 1979. The basic idea of computed tomography is that the inner mass distri-
bution of a specimen can be virtually reconstructed using projection images taken under different angles
of view. Nowadays, tomographic techniques are considered in a broader manner as any imaging method
which delivers cross-sectional pictures of the specimen under study. Besides non-destructive techniques
based on, e. g., penetrating radiation, also destructive techniques like the three-dimensional atom probe,
cf. [5] or a milling focused ion-beam, cf. [28] are considered frequently as tomographic methods.
Within the framework of this article, a brief introduction to computed tomography (CT) using penetrating
radiation shall be given. More precisely, ionizing radiation is used, i. e. hard X-rays from laboratory or
synchrotron-based sources. Furthermore, as high spatial resolutions are employed, frequently one uses
the term microtomography (µCT), cf. [43]. Further details, especially considering the use of alternative
types of radiation like neutrons or electrons are published elsewhere, cf. [3]. Likewise, specific techniques
like positron-emission tomography which are mainly applied in medicine are not within the scope of this
article, cf. [21].
For a standard µCT scan, the sample is placed on a rotation stage with the detector being at a fixed
position (contrary to medical CT, where the detector is moved and the patient remains at a fixed position).
The sample is illuminated while rotating, the transmitted radiation is recorded downstream of the sample.
Nowadays, area detectors are employed to record two-dimensional radiographic images of the sample:
µCT is also frequently called a full-field method, contrary to scanning techniques introduced later in
this paragraph. When neglecting scattering and diffraction effects, the recorded images represent the
attenuation of the sample. More precisely, each image element (pixel) is associated with a line integral of
the X-ray attenuation along the corresponding X-ray beam path. Different approaches exist to virtually
reconstruct the inner mass distribution of the sample from the projection images taken at different angles
of view (see, e. g., [23]): the problem can be formulated as set of independent equations, to be solved
(in an iterative manner) by algebraic methods. Alternatively, a summation of the measured integral
attenuation profiles in real or Fourier space can be performed (filtered-backprojection algorithm or the
direct Fourier inversion). The reconstruction is performed cross-sectional slice by cross-sectional slice
yielding a complete tomographic volume image consisting of a stack of cross-sectional slices.

2



The early developments of hard X-ray µCT until the end of the last millennium were dominated by the
quest for the ultimate resolution. The technical developments established X-ray µCT as unique analytical
tool, with high spatial resolutions achievable by using either laboratory or synchrotron-based sources, cf.,
e. g. [12]. The more recent developments are focusing on novel contrast schemes with either increased
sensitivity or complementary contrast modes on one side, and on high data acquisition speed towards
real-time three-dimensional tomographic imaging on the other.
The advantage of employing laboratory X-ray sources for µCT clearly is the easy access together with
the drastically reduced costs compared to large-scale facilities. Synchrotron light sources remain the first
choice for flagship applications being either novel techniques, delicate samples or both. Using the intense
flux of synchrotron light sources allowed already for increasing the contrast, more exactly the sensitivity
by introducing sophisticated methods like holotomography (see [9]), analyzer-based imaging (cf., e. g. [8])
or grating-based interferometry (cf., e. g. [48]). Briefly, these methods, frequently called phase-sensitive
imaging, measure directly or indirectly the local electron density rather than the local mass density like
in absorption-based X-ray imaging. The latter, being also very depending on the available photon flux
density, benefits from the use of synchrotron light sources as well: the number of photons emitted allows
to push the density-related material contrast [7]. In the case where polychromatic radiation is employed
rather than (quasi-)monochromatic, a further gain of photon flux density is reached. Subsequently, data
acquisition speed can be increased dramatically, allowing to acquire, e. g., several 10 000 X-ray images
per second. This allows to follow fast processes in two dimensions with a time-resolution down to the
microsecond range or to perform tomographic scans in the range of seconds [37]. Contrary, monochromatic
radiation and the common high photon flux density is required when µCT is combined with classical
diffraction imaging on crystals (X-ray topography) to track grains in three dimensions (see, e. g. [24]).
Independently of the flux, different tomographic geometries are available to access three-dimensional
images of flat objects, which generally can be considered as a challenge for classical µCT due to their
shape (cf., e. g. [16] and [18]).
In the last years, scanning tomographic techniques are employed more frequently, as they allow for
contrast modes completely complementary to the ones listed above. Scanning a sample through the
focal spot of an X-ray optical system allows for example to collect the fluorescence signal and/or the
powder-diffraction signal which gives, via confocal approaches or by tomographic techniques, access to
the local chemical species distribution, local strain or the distribution of crystalline phases within the
probed sample (cf., e. g. [6, 26, 44, 52]). The imaging sensitivity is further increased when Ptychographic
tomography is employed, which also increases the demands on the coherence of the source (see [11]).
Within this article, the aim is to show how to go beyond imaging, i. e. to use the highly resolved, rich-
contrasted images as the basis for a quantitative image analysis. A step, which is of crucial importance
as most applications, e. g. from materials research, do not only require an image but a sound quantitative
analysis. As an example, a microtomographic dataset of two joint glass-fibre reinforced polymer plates
is shown in Fig. 1: the glass fibres are visible in an excellent manner, thanks to the high contrast (data
was taken at the BAMline of the BESSY-II light source, Germany, see [39]). A common question which
cannot be answered by a plain volume rendering is, if the orientation of the fibres changes with respect
to their distance to the place where the plates are joined [50].

3 Image processing

The topic of image processing covers the gap between image acquisition and image analysis, i.e., its
purpose is to prepare the raw image data for subsequent measurements. From the wide range of methods
for image denoising and smoothing, contrast enhancement, grey value equalisation, or edge detection,
only a very narrow choice motivated by the use cases presented in Section 4 is explained here.
In general one has to keep in mind that in 3D some sophisticated methods developed for 2D images are
not applicable due to their forbidding computation time or memory requirements. Moreover, aiming at
a quantitative analysis at the end, everything that would bias the analysis has to be avoided.
In most cases, the final processing step is segmentation, which – in general – describes the process of
separating an image into disjoint areas which contain the objects or phases of interest – depending on the
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(a) Fibre system far from the welding line (b) Fibre system close to the welding line

Figure 1: Subvolumes of a glass fibre reinforced polymer with a welded join and estimated local fibre
directions. Sample: Institut für Verbundwerkstoffe Kaiserslautern. Imaging: A. Rack, ESRF, phase
contrast mode. Pixel size 3.5µm, total sample size approximately 7 × 7 × 3 mm3, analysed subvolumes
(1.4 mm)3, [50]. The colours code the θ component of the local fibre directions in polar coordinates with
blue corresponding to the z-axis (θ = 0) and red to θ = π/2.

context. For most image analysis tasks, image segmentation is a prerequisite, as it allows for measuring
size, shape, orientation and other properties from an image.

3.1 Images and adjacency systems

Let L = (s1, s2, s3)Z3 be a three-dimensional cuboidal lattice with lattice spacings s1, s2, s3 > 0. For all
image data used in this paper we have s1 = s2 = s3 = s, the analysis methods work nevertheless in the
general setting, too. Denote by W ⊂ R3 a cuboidal observation window. An image in our sense is a
function

f : L ∩W −→ V

where V is the set of real or complex numbers R, C, or V = {0, . . . , 2n − 1} with n = 1, 8, 16 or 32. If
V = {0, 1} then f is called binary image. In this case the image is often described as a set X ⊂ R3

observed at the lattice points within the observation window, that is the intersection X ∩ L ∩W . The
function f is then just the indicator function of X, restricted to the observable points f = IX |L∩W , hence
f(x) = 1 if x ∈ XL ∩W and f(x) = 0 otherwise. The term pixel or voxel is used for both x ∈ L ∩W as
well as the pair (x, f(x)). In a slight abuse of notation we speak of the lattice spacing s as pixel size, too.
For processing as well as analysis, the discrete connectivity within the image is crucial. In 2D, the
neighbourhood of a pixel x is completely described by the edges connecting x to its direct neighbours. In
3D, an unambiguous description needs to be more detailed. We therefore use adjacency systems consisting
of vertices, edges, faces, and cells, instead of neighbourhoods following [31]. Let C = [0, s]3 be the unit
cell of the lattice L. Its vertices can be written as a(v1, v2, v3) with vi ∈ {0, 1}, i = 1, 2, 3 and binarily
coded by 2v1+2v2+4v3 .
The 256 subsets ξ`, ` = 0, . . . , 255, of vertices of C can then uniquely be indexed by the sum of the
codes of their elements. A local adjacency system is formed by convex hulls F` = convξ` of subsets of
vertices of C fulfilling a number of consistency conditions [33, Definition 3.2]. Translation of the local
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adjacency system into all lattice points then yields the adjacency system. The maximal adjacency system
F26 =

⋃
x∈L{F0 + x, . . . , F255 + x} is formed by all subsets of vertices of C and corresponds to the 26-

neighbourhood. The minimal adjacency system F6 =
⋃
x∈L F0(C+x)∪F1(C+x)∪F2(C+x)∪ (C+x)

generated by the vertices F0(C), edges F1(C), faces F2(C) of C, and C, corresponds to the usually used
6-neighbourhood. The pairs (F26,F6) and (F6,F26) are consistent in the following sense: If foreground and
background of a binary image are equipped with these adjacency systems, then discrete closed surfaces
divide the background into two connected components (Jordan surface theorem) and the Euler numbers
of foreground and background can be estimated consistently. If (F26,F6) is used, then foreground and
background are treated very unevenly. This is particularly unnatural when foreground and background
are just two similar constituents of a micro-structure. To overcome this drawback, Ohser et al. [30]
introduced the adjacency systems F14.1 generated by the six congruent tetrahedra F139, F141, F163, F177,
F197, and F209, and F14.2 generated by the six tetrahedra F43, F141, F149, F169, F177, and F212. These two
adjacency systems are self-consistent, hence foreground and background can be equipped with the same
adjacency system without creating paradoxa. The only downside of their use is the loss of symmetry.

3.2 Segmentation

Image segmentation is one of the most important and well-studied areas within image processing, but
at the same time, it cannot be considered as solved, and requires specialized solutions most of the time.
From a mathematical perspective, image segmentation is an inverse problem, which is frequently ill-
posed. There are many reasons for ill-posedness of image segmentation problems, but common causes are
insufficient resolution and noise. Both of these causes lead to uncertainty in defining the structures which
are to be characterized. Therefore, prior or expert knowledge needs to be incorporated into the design of
specialized segmentation routines for most images. Due to this fact, it is beyond the scope of the present
paper to give an overview of the segmentation algorithms which have been applied to tomographic images
in the past. General overviews of image segmentation algorithms can be found e.g. in [35, 49].
One basic sub-problem of image segmentation is that of image binarization. Loosely speaking, a binariza-
tion transforms an arbitrary image into a binary image of the same size. The simplest and most common
image binarization procedure is thresholding. It simply decides whether or not a pixel belongs to the
foreground independently for each pixel depending on its value (or brightness). Despite its simplicity, this
approach remains to be the most generally applicable binarization method, and can lead to good results
when combined with adequate noise reduction algorithms. What needs to be answered is the question
of how to choose the threshold value. Here, one may differentiate between global and local thresholding
algorithms, depending on whether the threshold value is computed for an entire image, or for each pixel,
individually.
One example of a widely used rule for computing a threshold value is due to N. Otsu [34]. Under the
assumption that the image pixel values’ histogram has a bi-modal shape, it searches for the threshold
value which separates these two gray value regions best in terms of inner-class gray value variance and
intra-class squared distance.
Another segmentation task is the labelling of connected components like grains, pores, or inclusions.
While being in principle identical with the same task in two dimensions, labelling becomes much more
demanding in 3D. First of all, the discrete connectivity within the lattice has to be defined unambiguously,
see Section 3.1 above. Second, keeping track of equivalent labels during the actual labelling is much more
complicated, see [29] for more details.
For separation of just touching particles like the grains of a powder or for the reconstruction of cells of an
open cell foam, labelling will fail as the objects are connected in the binary image. A combination of the
Euclidean distance transform with the watershed transform will however work as long as the objects are
“sufficiently spherical” and their sizes do not differ too much: Let X ⊆ R3 be the set under consideration.
The Euclidean distance transform maps each point in R3 to its shortest distance to the complementary
set R3 \X,

EDT : R3 7→ [0,∞) : x 7→ min{||x− y|| : y ∈ R3 \X}.

Clearly, EDT(y) = 0 for all y ∈ R3 \X while ball-shaped regions in X will have local maxima in their
centres. On binary images, the EDT can be calculated in linear time. Inversion of the EDT image
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EDT(X ∩ L ∩W ) turns local maxima into minima: f(x) = max{EDT(X ∩ L ∩W )} − EDT(x). Now
the watershed transform assigns a connected region to each local minimum. The transform can be
interpreted as the flooding of the topographic surface {(x, f(x)) : x ∈ L ∩W}: Water rises uniformly
with growing grey value from all local minima. Watersheds are formed by all pixels where waters from
different sources meet. This idea was turned into an efficient algorithm by Vincent and Soille [47]. Finally,
the image is segmented into regions and the system of watersheds dividing them. In order to use the
sketched separation strategy successfully, superfluous local minima caused by discretisation effects, shape
distortions, and binarisation errors, have to be suppressed. Alterating the watershed transform such that
regions smaller than a pre-defined volume are united with larger regions [46] or smoothing the EDT image
using the morphological h-minima transform [42, Chapter 6] are well-tested methods for this. The latter
even allows to cope with large size differences when the parameter h is adapted to total grey value [15],
[33, Section 4.2.6].

4 Quantitative Analysis: Use cases

In applications, the micro-structures under investigation are typically not deterministic but show a certain
degree of randomness. Therefore, the content of an image may be interpreted as a random set. A wide
range of geometric characteristics for such random sets has been established [45]. Quantitative image
analysis provides the methods to measure these characteristics from image data [33]. In practice, suitable
characteristics as well as the methods to determine them are chosen depending on the type of micro-
structure: its invariance properties, the number of components it consists of and whether it has a natural
object structure or not.
A typical assumption is that the material under investigation is a macroscopically homogeneous and
isotropic random set. Macroscopically homogeneous roughly means that the random structure observed
in the sample does on average not depend on the position of the sample within the specimen. Isotropic
are structures which are - again on average - invariant with respect to rotations of the sample, too.
In this section we will discuss several analysis techniques by the example of typical use cases.

4.1 Open cell foam

An open cell foam is formed by a connected system of struts which are given by the edges of approximately
polyhedral cells. A typical analysis task for such a material is to analyse the distributions of the cells’
size and shape. This information can be derived from the intrinsic volumes (also Minkowski functionals
or quermass integrals) – the volume V , the surface area S, the integral of mean curvature M and the
Euler number χ. For a convex object, M is up to a constant the mean width. The Euler number is a
topological characteristic alternately counting the connected components, the tunnels, and the holes of
the particle. For a convex body, we have χ = 1, for a torus χ = 1−1 = 0, and for a sphere χ = 1 + 1 = 2.
Efficient algorithms for the simultaneous measurement of all intrinsic volumes from 3D image data are
available [33, Chapter 5].
Useful further characteristics like the isoperimetric shape factors f1 = 6

√
πV/
√
S3,f2 = 48π2V/M3,

f3 = 4πS/M2 can be derived from the intrinsic volumes. These shape factors are normalized such that
f1 = f2 = f3 = 1 for a ball. Deviations from 1 thus describe various aspects of deviations from ball
shape. Other shape characteristics are e. g. the ratio of the volumes of an object and its convex hull
characterising the convexity of the object or the ratios of the edge lengths of the minimal-volume bounding
cuboid characterising the elongation of the object.
In order to measure geometric cell characteristics the pore space has to be divided into single cells using
the cell reconstruction method described in Section 3.2 above. An application of this method to an open
copper foam is shown in Figure 2. The same techniques may also be used to separate the cells in closed
cell foams as well as the particles in granular materials. For particles such as fibers which have a highly
non-spherical shape the method will fail.
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(a) Sectional image of the strut system (b) Reconstructed cells

(c) Visualisation of the foam sample (d) Cell size distribution

Figure 2: Analysis of an open cell copper foam using cell reconstruction. Sample: Duocell foam. Imaging:
Fraunhofer ITWM. Pixel size 38.15µm, sample size approximately 24.0× 24.6× 24.4 mm3.
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4.2 Greenland firn (sintered snow)

For components of macroscopically homogeneous micro-structures without a natural object structure,
we use the densities of the intrinsic volumes as basic geometric characteristics. Instead of the absolute
values of the four functionals, now their ratio to the sample volume is considered which yields the volume
fraction VV , the specific surface area SV , and the densities of the integral of mean curvature MV and the
Euler number χV . For porous media, the porosity is defined as 1 − VV . A shape factor - the structure
model index (SMI) - can be derived via fSMI = 4πVVMV /S

2
V [32]. It takes values 4, 3, and 0 for ideal

systems of non-overlapping balls, cylinders, and planes, respectively.
As an example we analysed firn samples from the firn core B26 which was drilled during the North
Greenland traverse of the Alfred Wegener Institute Bremerhaven in 1995 [14]. Five firn samples taken
from different depths within the ice core were imaged using a portable µCT scanner inside a cold room at
−25◦C. From the resulting grey value images, binary images of the pore system of the firn were obtained
by global thresholding. Visualisations of the firn samples are shown in Fig. 3.
The estimated values for the intrinsic volume densities and the SMI are given in Table 1. They show
an increase of fSMI with increasing depth. The starting value around 3 indicates a cylindrical structure.
The visualisations of the deeper samples already show a number of isolated spherical pores. Therefore, a
further increase of fSMI towards 4 can be expected when going deeper within the firn core.

depth [m] porosity [%] SV [m−1] MV [m−2] χV [m−3] fSMI

56 15.71 1070.36 1.80e6 -1.21e8 2.954
60 13.16 890.00 1.57e6 -2.56e7 3.135
69 10.11 755.71 1.61e6 8.93e7 3.373
72 9.06 697.19 1.52e6 1.03e8 3.410
74 7.83 644.49 1.55e6 1.46e8 3.503

Table 1: Intrinsic volume densities and SMI for firn samples with different porosities.

4.3 Glass fibre reinforced polymers

With increasing resolutions and sample sizes, the number of samples for which macroscopic homogeneity
cannot be assumed rises, too. Global quantitative analysis as shown in the previous sections 4.1 and
4.2 yields only limited information in these cases. Thus additional local analysis is needed. This can be
achieved by tessellating the sample by sub-volumes, sliding a sub-volume through the sample or assigning
local measurement values to each pixel. Hilfer [20] defines local porosity in each pixel as the porosity
in a cubic sub-volume centered at this pixel. This idea can of course be generalized to all densities of
the intrinsic volumes as defined in Section 4.2. In this section, we present a local analysis method for
fibre systems combining the locality of measurements in each pixel with the robustness of averaging over
subvolumes.
Fibre systems like the fibre component in fibre reinforced composites, non-wovens, or fibre-reinforced
concretes can be mathematically modelled as an anisotropic randomly oriented fibre system Ξ in 3D
Euclidean space R3. The directional distribution of the fibres is crucial for materials properties like the
mechanical strength of fibre reinforced composites or the filtration efficiency of a non-woven. Based on
3D image data, we want to estimate the direction distribution R(A) = 1/(2πV (W ))E

∫
W∩Ξ

IA(ν(x))dx,
where A ⊆ S2

+ is a measurable set of non-oriented directions, ν(x) is the direction of the fibre in point x.
The expectation E is taken with respect to the random fibre system Ξ.
We estimate the directional distribution R by calculating the local fibre direction in each pixel. Recently,
several approaches to local direction estimation without segmentation of individual fibres have been
developed [1, 27, 51]. Here we use the method based on the Hessian matrix of second order partial
derivvatives of the grey values, that has proved to be fast and robust in many applications.
Let gσ be an isotropic Gaussian smoothing kernel in R3 with parameter σ > 0 adjusted to the fibre
radius, σ ≈ r. Now consider the Hessian matrix H(x) of second derivatives of the image f smoothed by
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(a) 56 m (b) 60 m

(c) 69 m (d) 72 m

(e) 74 m

Figure 3: Visualisations of reconstructed tomographic images of firn samples from five different depths.
Samples and imaging: J. Freitag, Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven.
Pixel size 40µm, sample size approximately (16 mm)3. The pore system is visualised.
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gσ:

H(x) =
(

∂2

∂xi∂xj

)(
f ∗ gσ

)
(x), x ∈ R3.

The eigenvectors of H carry information about directions of the random field Ξ at x. For a fibrous
structure, the least gray value variation is expected along the fibre. Thus the eigenvector corresponding
to the smallest eigenvalue of the Hessian matrix H(x) at x is interpreted as the local direction ν(x).
Cumulation of these local direction estimates yields the volume weighted direction distribution R as
defined above.
The outer product of the components ν1, ν2, ν3 averaged with respect to R yields the so-called second
order orientation tensor 〈aij〉. That is:

aij =
∫
νiνj R(dν), i, j = 1, 2, 3.

An estimator for the components aij is obtained by averaging the components of the local direction ν(x)
over small subvolumes W :

âij =
∑

x∈W∩L∩Ξ

νi(x)νj(x). (1)

The orientation tensors are widely used in simulation of materials properties in order to incorporate
anisotropic local behaviour.
A typical example of a glass fibre composite is the sample shown in Figure 4. The thickness of the fibres
is constant, approximately 10µm. The fibre weight fraction of 60% yields an approximate fibre volume
fraction of 50%. While the contrast between fibre and matrix component is good, this high fibre volume
fraction prevents segmentation of individual fibres. Moreover, the high density of the sample caused
a decline of the grey values towards the centre of the image. Consequently, global thresholding would
erroneously imply that the local fiber volume fraction varies strongly. A remedy is a global grey value
correction, known as shading correction from 2D image analysis: The morphologically opened image
is pixel-wise subtracted from the original. In this image, the local fibre directions can be estimated
and the results are in good agreement with both visual impression and theoretical expectations: Due
to the injection molding the fibres are oriented in fill direction near the sample boundaries while lying
perpendicular to this direction in the core of the sample.
A second example is the glass fibre composite shown in Figure 1. As the previous example, the sample
is not homogeneous as subvolumes close to the welding seam behave differently from subvolumes further
away from it. We analyse the two subvolumes visualised in Figure 1 using the Hessian matrix as described
above and estimate the orientation tensor aij via (1), averaging over the complete subvolumes. Denote
by λ1 ≥ λ2 ≥ λ3 ≥ 0 the eigenvalues of the orientation tensor in descending order. Fisher et al. [13]
use descriptors derived from these eigenvalues to classify girdle and clustered distributions on the sphere:
The shape γ = log(λ1/λ2)/ log(λ2/λ3) and the strength ξ = log(λ1/λ3). A value of γ below 1 indicates
a girdle shape while γ > 1 is typical for clustered shapes. If the value of ξ is however close to 0, than
the directional distribution is isotropic or in some other way neither clustered nor girdle-like. For the
subvolume close to the weldings seam we get γ = 0.28, ξ = 1.65 while γ = 0.63, ξ = 1.98 away from the
welding seam. Thus both distributions are girdle like. However, the latter is more concentrated, tending
towards a clustered one.

4.4 Fibre felt

Another example for a fibre structure is a polymer felt used for dewatering paper pulp, imaged using
holotomography [10], see Figure 4.4. This microstructure is formed by two fibre fractions - thick and thin
ones. The different fibre thicknesses can be quantified using the spherical granulometry. This transform
assigns to each pixel the size of the largest ball inscribed in the structure and covering it. More precisely,
let Ξ denote a random closed set, Br the ball of radius r and Ξ ◦Br the morphological opening of Ξ with
Br. The granulometry distribution function

G(d) = 1−
1− VV (Ξ ◦Bd/2)

1− VV (Ξ)
, d ≥ 0
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(a) Volume rendering (b) Slice through shading corrected image
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(c) Diagonal elements of the orientation tensor, averaged over
thick slices orthogonal to the x-axis

Figure 4: Glass fibre reinforced polymer. Sample and imaging: Institut für Verbundwerkstoffe Kaiser-
slautern. Fibre width approximately 10µm, pixel size 3µm, sample size approximately 1.8× 3× 3 mm3.
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yields a volume weighted generalized size distribution. It can be estimated from the binary image Ξ∩L∩W
by successive morphological openings with growing balls Ξ ∩ L ∩W ◦Bri

until all foreground pixel have
disappeared. Finally each pixel x is assigned the diameter of the ball used as structuring element in the
step where x disappeared for the first time. The resulting image is called ultimate opening [4].
A much more efficient algorithm is based on the medial axis M(Ξ∩L∩W ), which is the set of all centers
of maximal inscribed balls. Observe that the original structure can be reconstructed using the values of
the Euclidean distance transform EDT(Ξ∩L∩W ) at the pixels forming the medial axis. Sort these values
in increasing order and respecting this order draw balls with radius EDT(x) at all x ∈ M(Ξ ∩ L ∩W ),
such that larger values overwrite smaller ones. Pixel-wise multiplication by 2 then yields the ultimate
opening.
For the fibre felt, the granulometry distribution can be interpreted as the volume weighted thickness
distribution. The histogram in Figure 4.4 features two clear modes corresponding to the thin and thick
fibres forming the felt micro-structure. A minus-sampling edge correction was applied to remove too low
thickness values at the image borders. That is, only the thickness values of pixels 40 pixels away from
the image borders are taken into account. A morphological opening with a ball, whose diameter is larger
than the thickness of the thin fibres, yields the system of the thick fibres. A white-top-hat transform
(subtract opening result from original image) then yields the thin ones. The local fibre directions can
be estimated as described in Section 4.3 using the estimated thickness values for the thin and the thick
fibres, respectively. Masking with the separated images, yields the directional distributions for the thin
and the thick fibres. The eigenvalue analysis of the orientation tensor yields γthin = 1.43, ξthin = 0.04
and γthick = 2.43, ξthick = 0.88. Thus the direction distribution of the thin fibres is neither clustered nor
girdle-like while the direction distribution of the thick fibres tends to be clustered.

4.5 Early stage closed cell foam

One way of producing metal foams is the so called powder foaming method where both the bulk material
and the foaming agent in powder form are mixed, pressed, and subsequently heated. Here, we consider
aluminium foams with titanium hydride TiH2, which when heated, releases hydrogen that in turn blows
up the mixture. In order to improve the foaming process and to tightly control the resulting pore size
distribution, a deep understanding of the pore generation is needed.
To this end, aluminium foam samples stopped during early pore formation were imaged by synchrotron
µCT [17, 19]. In the resulting images, the three components - metal matrix, foaming agent, and pores, are
clearly visible due to their well separated grey values. Thus, after a median filter for noise removal, global
thresholding yields the titanium hydride and the pores, respectively. An additional preprocessing step is
necessary to avoid the physically impossible “particles” within the pores, not connected to the matrix:
Labelling of the background, subsequent extraction of the largest component, and finally inverting the
binary image, is equivalent to filling the small holes, in the present case. As a side effect, there is a small
number of pixels assigned to the TiH2 as well as to the pore space. These are removed from the pore
space by a pixel-wise subtraction.
Now, given binary images of the foaming agent and the pore system, we can tackle the actual analysis
question, whether the pores develop in the vicinity of the foaming agent particles or whether some other
effect dominates the early pore generation.
Let Ξ and Ψ denote the random closed sets of the pores and the TiH2, respectively. They can be assumed
to be macroscopically homogeneous. Naively, one would check whether Ξ and Ψ correlate by checking
whether

P(x ∈ Ξ, y ∈ Ψ) = P(x ∈ Ξ)P(y ∈ Ψ) for all x, y ∈ R3.

However, leftovers of the TiH2 can be observed within the bulk only. That is, we observe Ψ′ = Ψ ∩ Ξc,
where Ξc denotes the closure of the complement of the pore system Ξ. Consequently, the pore system Ξ
and the observed TiH2 leftovers Ψ′ will be correlated in any case.
If Ξ and Ψ are independent we have however

P(x ∈ Ξ, y ∈ Ψ′) = P(x ∈ Ξ, y ∈ Ξc, y ∈ Ψ)
= P(x ∈ Ξ, y ∈ Ξc)P(y ∈ Ψ) for all x, y ∈ R3. (2)
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(a) Volume rendering (b) Slice through colour coded granulometry image
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(c) Histogram of spherical granulometry distribution

Figure 5: Fibre felt, imaged by L. Helfen at ESRF using holotomography [10]. Pixel size 6.65µm, sample
size approximately (3.4 mm)3. The shaded region in the slice (b) indicates the edge correction.
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Deviation from this necessary condition would thus indicate correlation. In order to check it based on
image data, first observe that P(x ∈ Ξ, y ∈ Ψ)− P(x ∈ Ξ) P(y ∈ Ψ) = P(x ∈ Ξ, y ∈ Ψ)− VV (Ξ)VV (Ψ) =
covΞ,Ψ(x, y) is the cross-covariance function of the sets Ξ and Ψ. Due to the macroscopic homogeneity,
it depends on the difference h = x− y only:

covΞ,Ψ(h) = P(x ∈ Ξ, x+ h ∈ Ψ)− VV (Ξ)VV (Ψ), h ∈ R3.

We can now write the necessary condition (2) in terms of the cross-covariance function as covΞ,Ψ′(h) =
covΞ,Ξc(h)VV (Ψ). We note that VV (Ψ) = VV (Ψ′)/(1− VV (Ξ)) and deduce the characteristic

t(h) =
covΞ,Ψ′(h)(1− VV (Ξ))

covΞ,Ξc(h)VV (Ψ′)
,

which can be estimated efficiently from the respective binary images exploiting the discrete Fourier
transform [25, 38]. The relationship t ≡ 1 is a necessary criterion for the sets Ξ and Ψ to be independent.
Figure 6 shows visualizations of foam samples produced using the two different precursor materials AW-
6061 and AlSi7. For AW-6061, the strong deviation of t from 1 indicates short-range correlation of pores
and foaming agent. For the AlSi7 samples, the pore initiation by the silica inclusions dominates, thus
there is no strong correlation between pores and TiH2. See [17] for details. Distance values up to 3

√
0.7µm

are excluded from the analysis since pixels at the interfaces between the three constituents cannot be
assigned reliably due to the so-called halo or partial volume effect: The grey values in these pixels are
a weighted mean of the grey values of the two neighbouring constituents. If the restricting resource for
the computation is memory instead of time, an alternative rationale can be used: If pore space and
foaming agent were independent, then the observable volume fraction of TiH2 should be constant, no
matter at which distance from the pore system. This leads to the necessary condition that the fraction
of TiH2 observed in the intersection of the bulk with stepwise dilations of the pore system Ξ⊕Br should
be constant. Fast stepwise dilations by balls with growing radius can be achieved by simple global
thresholding of the Euclidean distance transform performed on Ξc. For details on this method see [38] or
[33, Section 5.5.2].

5 Conclusion

Computed tomography combined with quantitative image analysis offer a wide variety of new possibilities
to characterise micro-structures. Neither the use cases chosen for this paper nor the analysis methods
presented cover the complete range. They do however represent classes of structures – porous media and
(fibre) composites – for which 3D imaging and image analysis are particularly useful and sought-after. The
methods are restricted to well-tested, general ones being applicable in various applications. Nevertheless,
the selection remains subjective and incomplete. Missing are for instance, non-additive functionals, see
e. g. [29] for a definition of a mean diameter of percolating pores, further particle characteristics.
Geometric characterisation opens the door to reconstruction of micro-structures or so-called virtual ma-
terials design. Starting from the characteristics measured in the 3D image, a stochastic geometric model
is fitted to the micro-structure. Numerical simulation of properties like thermal conductivity, elasticity,
or filtration efficiency at the micro-scale ad homogenisation yield macroscopic materials properties. Selec-
tive alternation of the model parameters and therewith of the micro-structure allows to study the effect
on the physical property by simulating in realisations of the new micro-structure. This yields a deeper
understanding of the relation between micro-structure and materials properties and even enables optimi-
sation of the micro-structure with respect to the desired materials property. Frequently used models are
random systems of cylinders for fibers, random dense packings for granular media, and random Laguerre
tessellations for foams, see [22] for an overview and [2, 36, 40, 41] for examples.
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the German Research Foundation (DFG) under grant RE 3002/1-1 and by the German Federal Ministry
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Figure 6: Volume renderings of the AW-6061 and AlSi7 foam samples, red - pore space, green - foaming
agent leftovers. Images taken by L. Helfen at ESRF, pixel size 0.7µm, sample size (4.62 mm)3.
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