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Abstract
Bistability in quantum dot structures is examined by a drift-diffusion model in combination

with electron capture and emission processes. Our simulations provide a dynamic scenario with

extremely long switching times of the order of months and the results are in good agreement with

the experimental findings of Yusa and Sakaki [Appl. Phys. Lett. 70, 345 (1997)]. The analysis of

the data supports the importance of Auger capture processes for quantum dots.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) formed by self-organized growth processes [1] allow

for the spatial confinement of electrons on a scale of 10 nm. This suggests that these

structures may serve as extremely small memory devices. A first step in this direction is

the investigation of specially grown structures where the charging of a layer of QDs could

be detected via its influence on the conductivity of a two dimensional electron gas [2, 3].

These experiments showed a pronounced bistability (up to room temperature [4]) depending

on the history of the bias sweep. The sensitivity to light illumination suggests a variety of

applications in photoelectronic devices [5, 6].

A key issue towards a detailed understanding of these experiments is the question if the

observed bistability is of transient nature, and the order of the time scales involved. In order

to elucidate this point we performed a simulation of the experiment from Ref. 2 applying a

drift-diffusion model combined with the generation-recombination (GR) kinetics of the QDs.

Our results show that the experiments can be well described if Auger processes constitute

the dominant GR-processes. Therefore this type of experiments may serve as an additional

tool to shed light into the controversial issue on the nature of electron capture in quantum

QDs [7–9].

II. THE MODEL

Here we consider the structure used in the experiment of Ref. 2 as sketched in Fig. 1.

From the experimentally determined size of the QDs (height h = 5 nm and diameter 20 nm)

we estimate a ground state binding energy of Eb = 250 meV [10]. We use a QD density

NQD = 7.5 × 1010/cm2 .

We model the transport in the conduction band by a drift-diffusion approach assuming a

stationary state similar to Ref. 11, which is justified if the dielectric relaxation time is short

compared to other dynamical features. This provides us with the one-dimensional continuity

equation

− ∂

∂z

[
µn(z)

∂

∂z
EF (z)

]
= ef [n(zQD), n2D

QD(t)]χQD(z) (1)
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with the characteristic function

χQD(z) :=




1/h (z ∈ QD layer)

0 (z �∈ QD layer)
(2)

and the electron capture rate f which determines the electron density in the QD layer (in

units sec−1cm−2)
∂

∂t
n2D

QD(t) = f [n(zQD), n2D
QD(t)] . (3)

Here, e > 0 is the elementary charge, µ = 2 × 105 cm2/Vs is the electron mobility (at 77

K) and n2D
QD is the density per unit area of the electrons trapped within the QDs at position

zQD, EF is the Quasi-Fermi level of the electrons, which is related to the free electron density

n by

n(z) = Nc(z)F1/2

(
EF (z) − Ec0(z) + eφ(z)

kBT

)

with Nc = 2
(

mekBT

2π�3

)3/2 (4)

and the Fermi integral F1/2. Here me is the effective mass, Ec0 the intrinsic band edge of

the conduction band, T the lattice temperature, kB Boltzmann’s constant, and φ denotes

the electric potential.

The electron capture rate f is assumed to be a combination of Auger processes and single

electron processes (like multi-phonon capture and emission) in the following way:

f [n, n2D
QD] = (Cn2D + σ)(n2Dp2D

QD − n2D
1 n2D

QD) (5)

Here n2D = nh is the effective free electron density at the QDs per unit area (which may

be related to a wetting layer density of the same order of magnitude), p2D
QD = 2NQD − n2D

QD

is the density of unoccupied QD states for twofold degeneracy, and the constant n2D
1 =

Nch exp(−Eb/kBT ) results from the principle of detailed balance for equilibrium distribu-

tions in the nondegenerate case [12]. C and σ are the rate coefficients for the Auger and

multi-phonon process, respectively (see also Ref. 8). Quantization effects in the two dimen-

sional electron gas are neglected for simplicity.

The continuity equation (1) has to be combined with the one-dimensional Poisson equa-

tion

− ε0
∂

∂z

[
εr(z)

∂

∂z
φ(z)

]
= ρ(z)

with ρ(z) = e[N+
D (z) − n(z) − n2d

QD(t)χQD(z)]
(6)
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where N+
D is the density of ionized donors resulting from the δ-doping and ε0 and εr are the

absolute and relative permittivity.

The boundary condition for the quasi-Fermi level is EF = 0 at the AlGaAs/GaAs interface

due the contact with the two dimensional electron gas (2DEG) and EF = −eVg at the

GaAs/Al interface. Here the Schottky barrier height ES determines the difference between

the conduction band edge and the Fermi level in the metal Ec0 −e[φ(zSchottky)−Vg] = 1.0 eV

providing a Dirichlet boundary condition for φ. The second boundary condition of Neumann

type results from the charge of the ionized donors at the δ-doping. All calculations are

performed at 77 K.

III. RESULTS

At first we consider only Auger processes. We use C = 2 × 10−12 cm4/s, which was

calculated in Ref. 13. Fig. 2(a) shows the density NS of the 2DEG versus the gate voltage

for a bias sweep from 0 V to 1 V and back to 0 V (indicated by the arrows) with a constant

sweep rate and a total sweep duration of 40 sec. The findings are in excellent agreement

with the corresponding experimental data, see the broken line of Fig. 1 in Ref. 2, except for

an overall shift of the densities by ≈ 1010/cm2 (larger density in the experiment). Fig. 2(b)

shows the corresponding occupation probability of the QDs, demonstrating that the charging

state of the QDs discriminates between the different conducting states. For a comparison

we have also shown the result for the stationary situation f [n, n2D
QD] = 0. This shows that

both during the up- and down-sweep nonequilibrium distributions persist, as the GR rates

are not fast enough to establish thermodynamic equilibrium.

The dynamical nature of the bistability manifests itself in the time dependence of the

bias sweep, see Fig. 3. This shows that the behavior is robust against changes in the time

scales by several orders of magnitude albeit the plateau density where the dots are charged

is slightly changing with the sweep duration. Below this density the charge on the QDs is

hardly changed even for the slowest sweep rate. This result indicates that the branches are

stable on rather long time scales, an important feature for possible applications. Time scales

of 100 h have been demonstrated in Ref. [4] at room temperature where a more complicated

structure was used.

The rather long relaxation times are due to the fact that Auger rates depend quadratically
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on the electron density n, see Eq. (5). Indeed the potential profile provides rather low

electron densities at the QDs for biases below ≈ 0.7V , leading to a very small capture

rate. The magnitude of the Auger coefficient is controversial. E.g., in Ref. 8 a value of

C = 10−8cm4/s was deduced from experimental data. The corresponding Ns − Vg curve

is given in Fig. 4 (dashed curve). The result differs slightly and agrees less well with the

experimental data. This indicates that the findings are not very sensitive to the magnitude of

C which just rescale the time scales (the result for a one month sweep and C = 2×10−12cm4/s

roughly equals a 40s sweep and C = 10−8cm4/s, as both differ by four orders of magnitude).

The analysis of Ref. 8 provides additionally a single electron capture coefficient σ = 1 cm2/s

in Eq. (5). The corresponding result is shown by the dash-dotted line in Fig. 4. The presence

of the single electron term strongly changes the behavior. Regarding the large plateau width

and its low electron density, this result is not compatible with the experiment [2].

In Fig. (5) the result is given for different single electron capture coefficients σ while

Auger processes are neglected (i.e. C = 0). Good agreement with the experiment is found

for σ ∼ 10−7cm2/s while values above σ ∼ 10−3cm2/s are in strong disagreement with the

experimental findings.

Experimentally. electron capture times of the order of ≈ 10 − 100 ps for high carrier

densities have been observed, see, e.g. Ref. [7] and references cited therein. For dot densities

of 1010 − 1011/cm2 this implies σ > 10−3cm2/s if single electron processes are dominating.

From our study of the dynamical bistability this seems to be too large. On the other hand

the Auger coefficient C = 2 × 10−12cm4/s gives capture times of 25 ps for a (wetting) layer

density of 1011/cm2 and a dot density of 1011/cm2. The times become even shorter for larger

values of C < 10−8cm4/s, which are also consistent with our study.

IV. CONCLUSION

We have shown that the bistability observed in quantum dot structures is of dynamical

nature with time scales of the order of months under appropriate conditions. The long

time scales result from the dependence of the Auger capture and emission rate on the

conduction band electron densities. For not too large gate biases, the densities are low

and thus the kinetics is extremely slow. The analysis of this kind of experiments allows

for additional information to study the relevance of Auger capture in comparison to single
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electron processes as multi-phonon emission. Our findings suggest an upper bound for

single electron processes σ < 10−3cm2/s. Such values are not compatible with observed

capture rates at high electron densities. In contrast Auger capture coefficients in the range

of 10−12cm4/s < C < 10−8cm4/s agree well with the fast dynamics for high carrier densities

and explain the slow dynamics for low carrier densities where the dynamical bistability is

observed.

This work was supported by DFG in the framework of SFB 296.
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FIG. 1: Sketch of the sample used in Ref. 2 together with the resulting conduction band profile at

zero bias.
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FIG. 2: (a) Channel electron density Ns versus bias Vg applied to the gate contact for a bias sweep.

The duration of the entire sweep is 40 s and an Auger coefficient C = 2× 10−12 cm4/s is used. (b)

corresponding occupation probability of the QDs.
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FIG. 3: Ns-Vg-characteristic calculated for different sweep durations. An Auger coefficient C =

2× 10−12 cm4/s is used.
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FIG. 4: Ns-Vg-characteristic calculated with different values of the coefficient C with σ = 0 (full

and dashed line) as well as C = 10−8cm4/s and σ = 1cm2/s (dash-dotted line). The entire sweep

duration is 40 sec.
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FIG. 5: Ns-Vg-characteristic calculated with different values for the coefficient σ and C = 0. The

duration of the entire sweep is 40 s.
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